Big data in practice: text analytics (EN/NL/FR)

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

Big data in practice: text analytics (EN/NL/FR)

ABIS
Logo van ABIS
Opleiderscore: starstarstarstarstar_border 8 ABIS heeft een gemiddelde beoordeling van 8 (uit 1 ervaring)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeLeuven (BE)
12 jun. 2026
computer Online: Zoom, Teams
12 jun. 2026
Beschrijving

Learn how "text mining" works in this one-day ABIS training.

"Big data" has everything to do with "analytics": analysing large amounts of data in order to extract "business intelligence" hence information from the data. Speaking of "data", we often think of numbers and tables, and statistical analysis of those. But there is a lot of knowledge hidden in textual data: ordinary messages, written by humans, either in full phrases or not: like e.g. emails, job application letters, Twitter and Facebook messages, newspaper articles, websites, you name it. The extracted information can then be used for e.g. a "simple" application like searching for a text fragment, sorted by relevance, based on a s…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Text Analysis, Big Data, Data Science, Machine learning en Artificial Intelligence.

Learn how "text mining" works in this one-day ABIS training.

"Big data" has everything to do with "analytics": analysing large amounts of data in order to extract "business intelligence" hence information from the data. Speaking of "data", we often think of numbers and tables, and statistical analysis of those. But there is a lot of knowledge hidden in textual data: ordinary messages, written by humans, either in full phrases or not: like e.g. emails, job application letters, Twitter and Facebook messages, newspaper articles, websites, you name it. The extracted information can then be used for e.g. a "simple" application like searching for a text fragment, sorted by relevance, based on a search keyword. A kind of "Google Search", otherwise said. Or for an application like sentiment analysis.

Quickly it will become clear that automated text analysis is more complicated than it might seem: aspects like language, grammar, spelling mistakes, synonyms, negation, order of words, punctuation marks ... complicate the analysis. This is because text is in the first place meant as a communication means between humans, not to be understood by computers. Even the "simple" Google Search application turns out to be a real "machine learning" challenge.

During this training

  • we'll first introduce the most important concepts and terminology related to text analysis and "text mining", like tokens, normalisation, lemmatisation, part-of-speech, language models, text classification, ...
  • we will work with some software packages and libraries (specifically in Python and R) that have been developed to take care of the technical foundation of "natural language processing" (NLP), like the NLTK toolkit.
  • Also the use of regular expressions will be treated.

At the end of this training, you will have built up sufficient basic expertise to set up a specific application which uses one of the NLP libraries, and which implements a text mining application.

Intended for

This training is intended for those who want to start practising "text analytics": developers, data architects, business analysts, and market researchers wanting to obtain a better idea of the building blocks and technologies behind text analytics.

Backgroud

Some familiarity with statistical concepts (histogram, classification, hypothesis tests), see e.g. Statistics fundamentals. Also, a minimal programming background is helpful.

Main topics

  • What is text?
    • Building blocks of text: characters and words; grammar; punctuation; word order; language dependencies
    • Tokenisation: conceptual and technical; normalisation, a.o. composite words
    • Lemmatisation; part-of-speech tagging
    • Use of word lists and of corpora
  • Syntax and parsing
    • Introduction to some popular parsing techniques
    • Regular expressions
  • Language models
    • Statistical models
    • "Bag of words"
    • TF-IDF (term frequency & inverse document frequency)
    • n-grams and frequency distributions
  • Natural language processing (NLP)
    • overview of the aspects studied by NLP, like semantics, context, similarity, sentiment analysis
    • text categorisation; clustering techniques; measures for similarity
  • NLP software
    • overview of the current state-of-the-art and freely available software toolkits
    • practical examples and exercises with one of the toolkits

Training method

Classroom training, with practical examples and supported by extensive exercises.

Delivered as a live, interactive training – available in-person or online, or in a hybrid format. Training can be implemented in English, Dutch, or French.

Certificate

At the end of the session, the participant receives a "Certificate of Completion".

Duration
1 day.

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.