CAIP - Certified Artificial Intelligence Practitioner [GK840033]
computer Online: VIRTUAL TRAINING CENTER 16 mrt. 2026 tot 20 mrt. 2026Toon rooster event 16 maart 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253867.1 event 17 maart 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253867.2 event 18 maart 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253867.3 event 19 maart 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253867.4 event 20 maart 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253867.5 |
placeAmsterdam ARISTO (Teleportboulevard 100) 20 apr. 2026 tot 24 apr. 2026Toon rooster event 20 april 2026, 09:00-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL253861.1 event 21 april 2026, 09:00-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL253861.2 event 22 april 2026, 09:00-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL253861.3 event 23 april 2026, 09:00-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL253861.4 event 24 april 2026, 09:00-17:00, Amsterdam ARISTO (Teleportboulevard 100), NL253861.5 |
computer Online: VIRTUAL TRAINING CENTRE 20 apr. 2026 tot 24 apr. 2026Toon rooster event 20 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253861V.1 event 21 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253861V.2 event 22 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253861V.3 event 23 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253861V.4 event 24 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253861V.5 |
computer Online: VIRTUAL TRAINING CENTER 18 mei. 2026 tot 22 mei. 2026Toon rooster event 18 mei 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253865.1 event 19 mei 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253865.2 event 20 mei 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253865.3 event 21 mei 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253865.4 event 22 mei 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253865.5 |
computer Online: VIRTUAL TRAINING CENTER 27 jul. 2026 tot 31 jul. 2026Toon rooster event 27 juli 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253868.1 event 28 juli 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253868.2 event 29 juli 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253868.3 event 30 juli 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253868.4 event 31 juli 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253868.5 |
computer Online: VIRTUAL TRAINING CENTRE 10 aug. 2026 tot 14 aug. 2026Toon rooster event 10 augustus 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253862V.1 event 11 augustus 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253862V.2 event 12 augustus 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253862V.3 event 13 augustus 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253862V.4 event 14 augustus 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253862V.5 |
placeZoetermeer (Kinderen v Versteegplein 18) 10 aug. 2026 tot 14 aug. 2026Toon rooster event 10 augustus 2026, 09:00-17:00, Zoetermeer (Kinderen v Versteegplein 18), NL253862.1 event 11 augustus 2026, 09:00-17:00, Zoetermeer (Kinderen v Versteegplein 18), NL253862.2 event 12 augustus 2026, 09:00-17:00, Zoetermeer (Kinderen v Versteegplein 18), NL253862.3 event 13 augustus 2026, 09:00-17:00, Zoetermeer (Kinderen v Versteegplein 18), NL253862.4 event 14 augustus 2026, 09:00-17:00, Zoetermeer (Kinderen v Versteegplein 18), NL253862.5 |
computer Online: VIRTUAL TRAINING CENTER 21 sep. 2026 tot 25 sep. 2026Toon rooster event 21 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253866.1 event 22 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253866.2 event 23 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253866.3 event 24 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253866.4 event 25 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL253866.5 |
computer Online: VIRTUAL TRAINING CENTER 16 nov. 2026 tot 20 nov. 2026Toon rooster event 16 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253869.1 event 17 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253869.2 event 18 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253869.3 event 19 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253869.4 event 20 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL253869.5 |
placeNieuwegein (Iepenhoeve 5) 30 nov. 2026 tot 4 dec. 2026Toon rooster event 30 november 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL253863.1 event 1 december 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL253863.2 event 2 december 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL253863.3 event 3 december 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL253863.4 event 4 december 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL253863.5 |
computer Online: VIRTUAL TRAINING CENTRE 30 nov. 2026 tot 4 dec. 2026Toon rooster event 30 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253863V.1 event 1 december 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253863V.2 event 2 december 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253863V.3 event 3 december 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253863V.4 event 4 december 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL253863V.5 |
Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge
Online of op locatie er is altijd een vorm die bij je past.
Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.
OVERVIEW
OBJECTIVES
In this course, you will develop AI solutions for business problems.
You will:
- Solve a given business problem using AI and ML.
- Prepare data for use in machine learning.
- Train, evalu…
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge
Online of op locatie er is altijd een vorm die bij je past.
Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.
OVERVIEW
OBJECTIVES
In this course, you will develop AI solutions for business problems.
You will:
- Solve a given business problem using AI and ML.
- Prepare data for use in machine learning.
- Train, evaluate, and tune a machine learning model.
- Build linear regression models.
- Build forecasting models.
- Build classification models using logistic regression and k -nearest neighbor.
- Build clustering models.
- Build classification and regression models using decision trees and random forests.
- Build classification and regression models using support-vector machines (SVMs).
- Build artificial neural networks for deep learning.
- Put machine learning models into operation using automated processes.
- Maintain machine learning pipelines and models while they are in production
AUDIENCE
The skills covered in this course converge on four areas—software development, IT operations, applied math and statistics, and business analysis. Target students for this course should be looking to build upon their knowledge of the data science process so that they can apply AI systems, particularly machine learning models, to business problems.
So, the target student is likely a data science practitioner, software developer, or business analyst looking to expand their knowledge of machine learning algorithms and how they can help create intelligent decisionmaking products that bring value to the business.
A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.
This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-210) certification.
CONTENT
Lesson 1: Solving Business Problems Using AI and ML
Topic A: Identify AI and ML Solutions for Business Problems
Topic B: Formulate a Machine Learning Problem
Topic C: Select Approaches to Machine Learning
Lesson 2: Preparing Data
Topic A: Collect Data
Topic B: Transform Data
Topic C: Engineer Features
Topic D: Work with Unstructured Data
Lesson 3: Training, Evaluating, and Tuning a Machine Learning Model
Topic A: Train a Machine Learning Model
Topic B: Evaluate and Tune a Machine Learning Model
Lesson 4: Building Linear Regression Models
Topic A: Build Regression Models Using Linear Algebra
Topic B: Build Regularized Linear Regression Models
Topic C: Build Iterative Linear Regression Models
Lesson 5: Building Forecasting Models
Topic A: Build Univariate Time Series Models
Topic B: Build Multivariate Time Series Models
Lesson 6: Building Classification Models Using Logistic Regression and k-Nearest Neighbor
Topic A: Train Binary Classification Models Using Logistic
Regression
Topic B: Train Binary Classification Models Using k-Nearest
Neighbor
Topic C: Train Multi-Class Classification Models
Topic D: Evaluate Classification Models
Topic E: Tune Classification Models
Lesson 7: Building Clustering Models
Topic A: Build k-Means Clustering Models
Topic B: Build Hierarchical Clustering Models
Lesson 8: Building Decision Trees and Random Forests
Topic A: Build Decision Tree Models
Topic B: Build Random Forest Models
Lesson 9: Building Support-Vector Machines
Topic A: Build SVM Models for Classification
Topic B: Build SVM Models for Regression
Lesson 10: Building Artificial Neural Networks
Topic A: Build Multi-Layer Perceptrons (MLP)
Topic B: Build Convolutional Neural Networks (CNN)
Topic C: Build Recurrent Neural Networks (RNN)
Lesson 11: Operationalizing Machine Learning Models
Topic A: Deploy Machine Learning Models
Topic B: Automate the Machine Learning Process with MLOps
Topic C: Integrate Models into Machine Learning Systems
Lesson 12: Maintaining Machine Learning Operations
Topic A: Secure Machine Learning Pipelines
Topic B: Maintain Models in Production
Appendix A: Mapping Course Content to CertNexus®
Certified Artificial Intelligence (AI) Practitioner (Exam
AIP-210)
Appendix B: Datasets Used in This Course
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

