PySpark for Big Data
placeAmsterdam 16 feb. 2026 tot 18 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Amsterdam, Dag 1 event 17 februari 2026, 09:30-16:30, Amsterdam, Dag 2 event 18 februari 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 16 feb. 2026 tot 18 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Eindhoven, Dag 1 event 17 februari 2026, 09:30-16:30, Eindhoven, Dag 2 event 18 februari 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 16 feb. 2026 tot 18 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Houten, Dag 1 event 17 februari 2026, 09:30-16:30, Houten, Dag 2 event 18 februari 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 16 feb. 2026 tot 18 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Online, Dag 1 event 17 februari 2026, 09:30-16:30, Online, Dag 2 event 18 februari 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 16 feb. 2026 tot 18 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Rotterdam, Dag 1 event 17 februari 2026, 09:30-16:30, Rotterdam, Dag 2 event 18 februari 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 16 feb. 2026 tot 18 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Zwolle, Dag 1 event 17 februari 2026, 09:30-16:30, Zwolle, Dag 2 event 18 februari 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Amsterdam, Dag 1 event 14 april 2026, 09:30-16:30, Amsterdam, Dag 2 event 15 april 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Eindhoven, Dag 1 event 14 april 2026, 09:30-16:30, Eindhoven, Dag 2 event 15 april 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Houten, Dag 1 event 14 april 2026, 09:30-16:30, Houten, Dag 2 event 15 april 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Online, Dag 1 event 14 april 2026, 09:30-16:30, Online, Dag 2 event 15 april 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Rotterdam, Dag 1 event 14 april 2026, 09:30-16:30, Rotterdam, Dag 2 event 15 april 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Zwolle, Dag 1 event 14 april 2026, 09:30-16:30, Zwolle, Dag 2 event 15 april 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Amsterdam, Dag 1 event 16 juni 2026, 09:30-16:30, Amsterdam, Dag 2 event 17 juni 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Eindhoven, Dag 1 event 16 juni 2026, 09:30-16:30, Eindhoven, Dag 2 event 17 juni 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Houten, Dag 1 event 16 juni 2026, 09:30-16:30, Houten, Dag 2 event 17 juni 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Online, Dag 1 event 16 juni 2026, 09:30-16:30, Online, Dag 2 event 17 juni 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Rotterdam, Dag 1 event 16 juni 2026, 09:30-16:30, Rotterdam, Dag 2 event 17 juni 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Zwolle, Dag 1 event 16 juni 2026, 09:30-16:30, Zwolle, Dag 2 event 17 juni 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 17 aug. 2026 tot 19 aug. 2026Toon rooster event 17 augustus 2026, 09:30-16:30, Amsterdam, Dag 1 event 18 augustus 2026, 09:30-16:30, Amsterdam, Dag 2 event 19 augustus 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 17 aug. 2026 tot 19 aug. 2026Toon rooster event 17 augustus 2026, 09:30-16:30, Eindhoven, Dag 1 event 18 augustus 2026, 09:30-16:30, Eindhoven, Dag 2 event 19 augustus 2026, 09:30-16:30, Eindhoven, Dag 3 |
Spark Architecture
The course PySpark for Big Data discusses the architecture of Spark, the Spark Cluster Manager and the difference between Batch and Stream Processing.
Hadoop
After a discussion of the Hadoop Distributed File System, parallel operations and working with RDDs, Resilient Distributed Datasets are discussed in the course PySpark for Big Data. The configuration of PySpark applications via SparkConf and SparkContext is also explained.
MapReduce en SQL
Extensive consideration is given to the possible operations on RDDs, including map and reduce. The use of SQL in Spark is also discussed. The Gra…

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Spark Architecture
The course PySpark for Big Data discusses the architecture of Spark, the Spark Cluster Manager and the difference between Batch and Stream Processing.
Hadoop
After a discussion of the Hadoop Distributed File System, parallel operations and working with RDDs, Resilient Distributed Datasets are discussed in the course PySpark for Big Data. The configuration of PySpark applications via SparkConf and SparkContext is also explained.
MapReduce en SQL
Extensive consideration is given to the possible operations on RDDs, including map and reduce. The use of SQL in Spark is also discussed. The GraphX library is discussed and DataFrames is discussed. Iterative algorithms are also treated.
Mlib library
Finally the course PySpark for Big Data pays attention to machine learning with the Mlib library.
Audience PySpark for Big Data
The course PySpark for Big Data is intended for developers and upcoming Data Analysts who want to learn how to use Apache Spark from Python.
Prerequisites training PySpark for Big Data
To participate in this course, some experience with programming is beneficial for understanding. Prior knowledge of Python or big data handling with Apache Spark is not required.
Realization course PySpark for Big Data
The theory is treated on the basis of presentations. Illustrative demos are used to clarify the concepts discussed. There is ample opportunity to practice and alternate theory and practice. The course times are from 9.30 am to 4.30 pm.
Certification course PySpark for Big Data
Participants receive an official certificate PySpark for Big Data after successful completion of the course.
Modules
Module 1 : Python Primer
- Python Syntax
- Python Data Types
- List, Tuples, Dictionaries
- Python Control Flow
- Functions and Parameters
- Modules and Packages
- Comprehensions
- Iterators and Generators
- Python Classes
- Anaconda Environment
- Jupyter Notebooks
Module 2 : Spark Intro
- What is Apache Spark?
- Spark and Python
- PySpark
- Py4j Library
- Data Driven Documents
- RDD's
- Real Time Processing
- Apache Hadoop MapReduce
- Cluster Manager
- Batch versus Stream Processing
- PySpark Shell
Module 3 : HDFS
- Hadoop Environment
- Environment Setup
- Hadoop Stack
- Hadoop Yarn
- Hadoop Distributed File System
- HDFS Architecture
- Parallel Operations
- Working with Partitions
- RDD Partitions
- HDFS Data Locality
- DAG (Direct Acyclic Graph)
Module 4 : SparkConf
- SparkConf Object
- Setting Configuration Properties
- Uploading Files
- SparkContext.addFile
- Logging Configuration
- Storage Levels
- Serialize RDD
- Replicate RDD partitions
- DISK_ONLY
- MEMORY_AND_DISK
- MEMORY_ONLY
Module 5 : SparkContext
- Main Entry Point
- Executor
- Worker Nodes
- LocalFS
- SparkContext Parameters
- Master
- RDD serializer
- batchSize
- Gateway
- JavaSparkContext instance
- Profiler
Module 6 : RDD’s
- Resilient Distributed Datasets
- Key-Value pair RDDs
- Parallel Processing
- Immutability and Fault Tolerance
- Transformation Operations
- Filter, groupBy and Map
- Action Operations
- Caching and persistence
- PySpark RDD Class
- count, collect, foreach,filter
- map, reduce, join, cache
Module 7 : Spark Processing
- SQL support in Spark
- Spark 2.0 Dataframes
- Defining tables
- Importing datasets
- Querying data frames using SQL
- Storage formats
- JSON / Parquet
- GraphX
- GraphX library overview
- GraphX APIs
Module 8 : Broadcast and Accumulator
- Performance Tuning
- Serialization
- Network Traffic
- Disk Persistence
- MarshalSerializer
- Data Type Support
- Python’s Pickle Serializer
- DStreams
- Sliding Window Operations
- Multi Batch and State Operations
Module 9 : Algorithms
- Iterative Algorithms
- Graph Analysis
- Machine Learning API
- mllib.classification
- Random Forest
- Naive Bayes
- Decision Tree
- mllib.clustering
- mllib.linalg
- mllib.regression
Waarom SpiralTrain
SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.
Onze trainingkenmerken zich door :
• Klassikale of online open roostertrainingen en andere
trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

