Advanced Snowflake eLearning
Beheers Snowflake als een pro met de Advanced LearningKit: leer alles over performance, Snowpark, data pipelines en AI in 4 modules met 25+ uur content en 12 maanden toegang.
De Advanced Snowflake LearningKit is ontwikkeld voor data engineers die Snowflake tot in de puntjes willen beheersen. In vier onderdelen leren deelnemers hoe ze prestaties optimaliseren met clustering, caching en queryprofilering, complexe data transformaties uitvoeren met Snowpark en externe systemen, continue data pipelines opzetten met dynamische tabellen en streams, en geavanceerde machine learning en AI-modellen bouwen en implementeren. Door theorie, praktijk en examens te combineren, biedt deze eLearning alles wat…

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Beheers Snowflake als een pro met de Advanced LearningKit: leer alles over performance, Snowpark, data pipelines en AI in 4 modules met 25+ uur content en 12 maanden toegang.
De Advanced Snowflake LearningKit is ontwikkeld voor data
engineers die Snowflake tot in de puntjes willen beheersen. In vier
onderdelen leren deelnemers hoe ze prestaties optimaliseren met
clustering, caching en queryprofilering, complexe data
transformaties uitvoeren met Snowpark en externe systemen, continue
data pipelines opzetten met dynamische tabellen en streams, en
geavanceerde machine learning en AI-modellen bouwen en
implementeren. Door theorie, praktijk en examens te combineren,
biedt deze eLearning alles wat nodig is om Snowflake in te zetten
voor schaalbare dataworkloads, betrouwbare databeveiliging en
innovatieve analytics binnen elke organisatie.
* 12 Months Online Access
* 25+ hours of content
* 4 Assessments
* Tips & Tricks
The Advanced Snowflake LearningKit is designed to provide data
engineers and advanced users with the skills to fully leverage
Snowflake's platform for data transformation, optimization,
advanced analytics, and data governance. This comprehensive
learning is divided into four key tracks, each focusing on a
specialized aspect of data engineering. The curriculum emphasizes
performance optimization strategies, leveraging Snowpark for
complex data transformations, applying machine learning techniques,
and ensuring robust data governance and security.
By the end of this learning, participants will have deep expertise
in managing high-performance workloads, implementing machine
learning models, and maintaining data security on Snowflake.
Track 1: Performance Monitoring and Optimization.
This track equips learners with the tools and techniques needed to
optimize Snowflake performance for large-scale data engineering
tasks. You will explore the strategies for scaling workloads with
virtual and multi-cluster warehouses, query optimization through
data clustering and caching, and monitoring performance with query
profiling and resource utilization tracking. Learners will also
explore handling geospatial and semi-structured data, working with
transient and dynamic tables, and optimizing queries through secure
and materialized views.
Courses (7 hours +):
* Snowflake Performance: Scaling and Autoscaling Warehouses
* Snowflake Performance: Query Acceleration and Caching
* Snowflake Performance: Clustering and Search Optimization
* Snowflake Performance: Iceberg Tables, External Tables, and Views
Assessment
* Final Exam: Snowflake Performance Monitoring and Optimization
Track 2: Data Transformation Using SnowparkIn this in-depth track,
learners dive into Snowpark, Snowflake's powerful framework for
scalable data manipulation and transformation. Through hands-on
experience with Snowpark DataFrames and integration with external
systems like Kafka and Spark, learners will master tasks such as
filtering, aggregating, and joining data. The track also covers the
creation and management of user-defined functions (UDFs) and stored
procedures, as well as data quality assurance using Soda and
real-time data ingestion techniques.
Courses (5 hours +):
* Data Transformation Using the Snowpark API
* Snowpark pandas and User-defined Functions
* Snowpark UDTFs, UDAFs, and Stored Procedures Assessment
* Final Exam: Data Transformation Using Snowpark Track 3:
Continuous Data PipelinesThis track introduces learners about
continuous data pipelines in Snowflake. Participants will learn how
to create and configure dynamic tables and the usage and internal
workings of streams for change data capture (CDC), stream types,
and standard stream contents during insert, update, and delete
operations. The final section of this track will be exploring
continuous data processing tasks, creating and execute scheduled
serverless and user-managed scheduled tasks, and implementing task
graphs and child tasks.
Courses (4 hours +):
* Continuous Data Pipelines and Dynamic Tables in Snowflake
* Streams and Change Data Capture in Snowflake
* Using Tasks and Architecting Snowflake Data Pipelines
Assessment
* Final Exam: Continuous Data Pipelines in Snowflake Track 4:
Advanced Analytics and Machine LearningThis track introduces
learners to the world of machine learning within Snowflake.
Participants will learn to design and deploy ML models using
Snowpark and popular tools like scikit-learn. The track covers key
areas such as data preprocessing, model training, hyperparameter
tuning, and deployment through MLOps. Learners will also explore
the application of large language models (LLMs) in Snowflake Cortex
for tasks like sentiment analysis, translation, and summarization,
as well as advanced techniques like time series forecasting and
anomaly detection.
Courses (9 hours +):
* Snowpark ML APIs and the Model Registry
* Snowflake Feature Store and Datasets
* Using Streamlit with Snowflake
* Anomaly Detection with Snowflake ML Functions
* Snowflake Forecasting Models and the AI & ML StudioSnowflake
Cortex for LLMs, RAG, and Search Assessment
* Final Exam: Advanced Analytics and Machine Learning in
Snowflake
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

